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3% APPLICATION OF THE MJ3l"ODS OF ANALYTICAL DYNAMICS 
TO THE THEDRY OF OPTIMAL FUGHTS 

V . S .Novo s elov 

\ qs io  
i 

I 

I 

The author gives an exposition of t he  theory of optimal pro- : v  ! 

' I  I 

' ,  

cesses, based on t h e  methods of ana ly t ica l  dynamics. 

t egra t ing  the  variational. foxmula of t h e  act ion functional 

over t h e  t r a j ec to r i e s  o r  arcs of a spec ia l  f i e l d  of extremals, 

the m a x b u m  principle  i s  proved, and t h e  suf f ic ien t  conditions 

of t h e  extremum are established. The possible  application of 

t h e  Hamilton-Jacobi method t o  t he  construction of optimal re- 

l3y in- 

_ _  

' i  I gimes i s  pointed out; s ta r t ing  f r o m  t h a t  method, equations 

- '  1, i 

-.. 1 b i t s  are obtained. 

2 5  

defining t h e  optimal impulse transfers between mplanar or- 

I - ,  

,Section 1. The Conditions of Stat ionari ty  

y .  

Given: a controllable device whose motion i s  described by t h e  system of 
.? 

> '  , ordinary d i f f e ren t i a l  equations : 

(1.1 

+ ( I  ;where t h e  4 (t) are t h e  controls o r  the control functions, which may be piece- 
/ :  ! 

2 !wise continuous; and t i s  the  time. 
I , '  

The controls must satisfy t h e  conditions: 
' I  - 1  

' 4  

' ,  
u&1 \< uk < U&r, U&1 =Consf,  st. (1.2 

I n  par t icu lar ,  f o r  all or some equations, t h e  equalities 4 1  = - , - 2  = c o m a ;  
I 

be sa t i s f ied .  

* Numbers i n  the  margin indicate  pagination i n  the-or ig ina l  f o r e i m  te&. 

- 1  

- _  



We s h a l l  assume that t o  any admissible equation there corresponds a uniqu 
; 
arc  system (l-l), s t a r t i ng  from the p o i n t  w i t h  t he  coordinates a t  the ini- 

, 
~ tial time of motion to . The end-time w i l l  be denoted by T, and the coordinate 

- 

.: 4 

. of t h e  end point by 2 . 
\ 

The boundary values of the  variables, in the  general case, a r e  correlated 
10 , 

by t h e  implici t  conditions 
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4 

(1.3 

: 

- t ions (1.1) - (1.3). 

We s h a l l  c a l l  a t ra jectory allowable or admissible i f  i t  s a t i s f i e s  the rela- 
/ 

I 
J Required: t o  select  t h e  controls i n  such a manner that the functional 

T 

(1.4 

- -  +calculated f o r  these controls shall be minimal as  compared wi th  t he  values 
2 ,  I 
- 4  - <  !of t h e  functional f o r  a l l  other admissible arcs. 

/1 

' ~ 

- .  1- The functional J on t h e  admissible arcs is  equivalent t o  the functional 
1 - \  

% I  

. 'where 1 

(1-4' 

.:) 

-0 ~ 

.- terminate constants. 
\ I  

d% vanish on t h e  boundaries of t h e  re * I  ]formulas y = I& (Yk ), whose derivatives 

Here, A i  a re  the expl ic i t  functions of time t o  be determined and Vp a r e  inde- 

From the  controls I& w e  may pass t o  t h e  new controls yk by means of t he  
' I  1 

'K 
\ -  > l  

igion ( L 2 ) *  

;several  papers (Bib1.1.2). 

I Instead of expressing I& in terms of yk , a l a rge r  number of  equations can 

'be considered and auxi l iary indetexmhate mult ipl iers  hn+k , which a r e  function: 
I 
'of time, can be introduced. 

Examples of the  introduction of such controls a r e  discussed i n  
:' 1 
' i  

_ _ i  
, 

To the  function L, in that case, w e  must add the  
7 -  1 - 



L 

3 sum 
- 4  

7 

r 

The t o t a l  var ia t ion of t h e  action functional w i l l  be defined by the  for- 
'> 

m u l a  
L .  

' f o r  which t h e  following notation has been adopted: 
I '  

(1.6 

I If the  controls Yk are not varied, then eq.(l.5) coincides w i t h  t h e  f o r  
0 

m u l a  of t he  total .  var ia t ion of t he  action functional, uhich i s  extensively use 
- 4  

- '  +in analy t ica l  mechanics (Bib1.3). 

> <  I 
- -7 
: i> 

1' 

- 2  4 

L e t  the  functional. J have a smooth maximum. Then, by equating AU t o  zero 

:we arrive a t  the  necessary conditions of t h e  extremum 

) .  

- 
:) j 

i t :  

gS expressing, i n  eq.(1.9), t h e  t o t a l  var ia t ions of t h e  var iables  xi in - 

,terms of isochronous var ia t ions by the formulas ibq = 6% + q A t ,  and equating 

i to  zero t h e  terms i n  A t  and 6- a t  the times to and T, t h e  conditions (1.9) 
, I  

a -  {will be reduced t o  t h e  form of 

/1 



The conditions (1=7), (1.81, and (1.10) are necessary conditions for the  

var ia t ional  problem of Bolza (Bibl.4). 

of the  system (1.10) must be omitted and i f  T i s  prescribed, t he  second equa- 

If to is prescribed, t he  first e q u a t i o  

- 
- t ion of t ha t  system. 

1 

) +  

' d  

W e  now note the  important problem when the  functional t o  be minimized nee 
' 0 . 
, ;  ' n o t  have a smooth minimurn. T h i s  i s  a rapid-action problem. I n  this case, Fo 
1 2  ' 1 - 

T 

Hence we obtain the  equality 

and t h e  conditions of t ransversal i ty  

= HT = -1, as well as eqs.(1.7), (1.8) 

The function R , - i n  this case, is defined by the  fonnula 
I 

The necessary conditions f o r  other optimal problems w i t h  a non-smooth ex- 

tremum of the fundamental functional a r e  obtained similarly. 

If  a larger  number of controls are being considered, then eqs.(l.8) a r e  

replaced by the relat ions 

(1.81 

Now l e t  the controls yk not be introduced, and l e t  us investigate the  pro 

l e m  with only the  or iginal  controls 4 . I n  t h i s  case, eqs.(l.8)must be re- 

placed by the conditions 



- Note 1. The system of equations (1.1) and (1.7) i s  a canonical system 

' ,  with t h e  Hamiltonian H, the  pulses h i ,  and t h e  coordinates 

- 
- and in that the  additional variables 4 and yk a r e  present. 

. T h i s  canonical 

system differs from t h e  usual canonical system in that H depends l i n e a r l y  on A: 
L 

\ 

i Since t h e  system of equations (1.1) and (1.7) i s  canonical, w h i l e  t h e  
1 
7 s 0 

1 : 

I :  

1 

boundary controls 

function H w i l l  be equal t o  t he  p a r t i a l  time derivat ive of this function with 

t h e  group of variables 9 , 1 1 ,  4 ,  t. 

jectory with continuous controls, w e  shall have: 

1 and 1+2 a r e  constant, t h e  t o t a l  time derivat ive of the,& 
I -  

, 
Hence, on any phase of t h e  optimal tra- 

i 

(1 . l l  

, - .  

2 .where h = const and i s  t h e  in i t ia l  time of that phase. 

If t h e  functions Fo and Fi do not exp l i c i t l y  depend on t, then H w i l l  be 

constant on any such portion. 

i 
i 2 s  

-- - '> 

1- 
- \  

' ,  Note 2. A point a t  which t h e  controls undergo a discontinuity i s  cal led 

I . a  corner. Le t  us vary the  posi t ion and time of some corner point by the  quan- 

Then, from eq.(1.5), t h e  var ia t ion of t h e  fundamental func 
. >  

t i t i e s  hxi and AT. 
2 4  

-<# dtional U, taken on t h e  optimal a r c  before and a f t e r  t h e  comer, w i l l  be 
.I 

1 

4 1  

This variat ion of t h e  functional must vanish f o r  t h e  optimal arc.  

w e  obtain t h e  well-known Weierstrass-Erdmann conditions of continuity of  hi an 

H along t h e  en t i r e  optimal arc. 

Hence 1 7  4 

I 

!i ' 

1 ,  

+ 

' 

' I  For this reason, when t h e  functions F,, and F1 are stationary,  t h e  Hamil- 
\ I  1 Itonian H w i l l  be one and t h e  same constant f o r  t h e  en t i r e  optimal arc.  For ex 

~ 



c 

1 

ample, f o r  the rapid-action problem, as follows from the  above discussion, it 1 

, w i l l  be equal t o  minus unity. 
- 4  

, 
(, ,Section 2. The Maximum Principle 
- 

4 \ -  

1 
!O  1 
, ,over t he  tubes of t he  t ra jec tor ies  i s  widely used in analyt ical  mechanics (see 

1 'Etibl.4). 

The method of integrating the  variational formula of the action functio 

i 

i .?  
Let us apply it t o  f ind  the  necessary and suf f ic ien t  conditions of 

1 ,  

I . the  extremum. 

Consider any admissible a r c  AB of t he  system (1.1) and (1.7) w i t h  t he  con-, 1 
! 

This arc  i s  made t o  pass through any two points A and B satisfyin4 

1 

! '  ry 

t r o l s  {h 1 . 
eqs.(l.3) at  cer ta in  times To and T. 

N I - ( 1  

2 I n  par t icular ,  t h e  points A and B, as  
2 )  1 1 
- 1 - 1  well as the  times % and?, may coincide with t h e  i n i t i a l  and f i n a l  posit ions 1 
2 )  

_ -  

^ i  

- 1 
c :E* 3 of the  optimal arc-  1 

;and times of the  optimal arc,  and the  a rc  AB can differ from t he  optimal only 

iover a cer ta in  in te rva l  f o r  which the controls 

1 
_ I )  ~- 

d i f f e r  from the  controls ~ 

I c, 

I 

Let us now pass through t h e  point A and the  i n i t i a l  point of t h e  optimal 
.- 1 - I 

., arc  i n  the  (2n + 1)-dimensional space of configurations of the  coordinates a, 1 
impulses hi and time t, a certain curve (.$: I 

~ 

1 
+) iWe note t h a t  f o r  the  time being e q ~ ~ ( 2 . 1 )  may be a r b i t r a r i l y  assigned, subject 1 
- 0 

? A  X ~ - X ~ ( Q ~ ) ,  ' - i = ~ ~ ( ~ p ) ,  t o= t (ap ,  go), ap=ap(pJ. ( p a  -* -1. (2.1 >I 
. ', 

a t  
3V 

,: : to  t h e  requirements that-> 0, and that  the contour of ($ passes through the ' ( !  i 
I 
I 

I -  

r ;below. 

!above two points. The additional res t r ic t ions on t h e  choice of C$ w i l l  be giv& 
I 

I 

We s h a l l  apply the term extremal t o  any arc  of t h e  system (1.1) and 

.(1.7). 

;curve t$ included between the  initial point of the  optimal curve and t h e  point 

Let us now pass through points of the curve AB and that pa r t  of t he  
I 

- i 1 

7 ,  



, A ,  t h e  extremals corresponding t o  controls equal t o  t h e  controls { & I  on the 

.optimal arc. 

itremals crossing t h e  curve AB shall in te rsec t  it. 

Let us continue the  contour C$ beyond t h e  point A so that the  ex 

I Let t he  re la t ions  (2.1) be such that for v = v’ t h e  curve 6 shall be 
’ ,  

.transformed by these extremals i n t o  the curve Gr passing through the  end point 

,of t h e  optimal a r c  and the  point B. 

, 
Lo . 
1 1  The contour of G w i l l  be defined by t h e  

(2.2 

1 

Through the  points of this segment of t h e  curve I$ l e t  us draw extremals 

w i t h  controls  ctst) such t h a t  t hese  extremals, f o r  v = v’, shall completely fix 
t h a t  segnent of t he  curve G between t h e  end point of t he  optimal a r c  and the  

point B, i f  t he  following conditions are sa t i s f i ed :  ~ - 

a; ( t  ( Q p  (PI, uo))=u& 

u; (%p(l.4* 4) = Uk (t (ap (PI. d). 
(PI, *), 

A t  any t h e  t the  boundary values f o r  t h e  controls {d] w i l l  be and 

- ’  Gj. 
* I  
1 %  + 

\ -  I 

1- final condition: 

Let us now subject t he  choice of t h e  curve and the  controls {d] t o  thc 

I ,  
- i  

Let us write out t h e  condition (2.3) i n  t h e  expanded form: 

(2.3 

(2.4, 
I 

7 



The following notation has been used i n  eq.(2.4): 

I A l l  t he  above conditions can be sa t i s f ied ,  because of the f ac t  that t h e A  

functional dependence of  x: and 1; on aP is arbi t rarg,  the  functions up of the 

parameter P and $ of the time t a r e  arbi t rary,  and the  function t(Q',, v )  i s  1 

- likewise arbi t rary.  

- t  1 %  

- <  

_ _  
We shall now integrate  the  expressions (1.5) i n  t he  above-mentioned f i e l d  

_ -  
1 of extremals with controls coinciding with t h e  optimal controls {& I .  We ob- 

~~ ~ ~ - 1  

(2.6 - \c=t 
I O  

u 

Hen qi=F,(x j .  uk. f ) .  It s i d e  is calculated on the  o p t h a l  arc, the 

first in t eg ra l  of t h e  r ight  s ide  over t he  curve 

the  optimal a r c  t o  t h e  point A )  the  second integral ,  over t he  curve Q f r o m  t h  

end point of t h e  optimal a rc  t o  the  point B ;  and t h e  t h i rd  integral ,  over the 

t ra jec tory  AB. 

from the  i n i t i a l  point of 

The quant i t ies  Q a re  defined by eqs.(l.l) i n  the  form of 

The function H and the factors  in the t h i r d  in t eg ra l  of t h e  r ight  s ide  a re  

~ ..- - 

I 8 



- 

calculated on the  e x t r d s  of t he  f i e ld  under consideration and t h e  points of 

t h e i r  in te rsec t ion  with t h e  curve AB. The controls entering exp l i c i t l y  in to  H 

1 therefore  coincide with the  optimal controls [Q 3 . 
I . 

' 
I 

, I  

- 
1 On in tegra t ing  eq.(2.3) i n  the  f i e ld  of extremals with controls Ed], w e  

' !  

E3y def in i t ion  of the  function H [eq.(1.6)], w e  f i nd  
. I  R 

Star t ing  out f r o m  e q ~ ~ ( l . 4 1 ) ~  (2.6) - (2.8), and remembering t h a t  t he  op- 
, 7  _.  

timdl a r c  and the  a r c  AB both s a t i s f y  t h e  conditions (1.3)s w e  have: 
- '  i 

i J  
'?n I 
- 

(2.91 

"i ; Hence we a r r i v e  a t  the necessary condition f o r  t he  fundamental functional 
-, 

I ' t o  be minimum. T h i s  condition i s  that H s h a l l  be maximum on the  optimal arc:  - 
f f j x i ,  I i k .  f )  2 H ( K i .  )i, I l k .  4 ) .  (2.10; 

'i 1 

7 ,  I The condition (2.10) i s  t h e  fundamental condition of L.S.Pontrgagh1s 

,maximum pr inc ip le  (Rib1.S) and i s  equivalent t o  the  necessary Weierstrass con- 

:di t ion (Bibl.4). 

follow from t h e  re la t ion  (2.10). 
1 :  1 

I 

- 1  
3 

T ~ ,  More par t icular ly ,  t h e  conditions (1.8), (1.81) and (1.8tI) 

Let condition (2.10) be sa t i s f ied  for any controls {< 1, some controls {Q 
: I  1 

- 4  

I 

' 1  

I :and f o r  a and A i  which a r e  a solution of eqs.(l.l), (1.7) f o r  any q, 0 A: and 
' I  

Ifor these  controls{& 3 .  
the  conditions (1.1) - (1.3), (1.7), and (1.9) a r e  sa t i s f i ed ,  then, as shown bj 

: the above discussion, that a rc  w i l l  be optimal. 

If, in t h i s  case, on some arc  with t h e  controls {& 1, 
- 

I 

I 

\ I  We have reached t h e  conclusion that t h e  max5malit.y of H f o r  ce r t a in  

9 
, . .  

. __ 



trols Is) wi th  xi and 1 1  that are a solution of the system (1.1) and (lo”), 

for a rb i t r a ry  initial values, and the sa t i s fac t ion  of t h e  conditions (1.1) - 
(l.3), ( l o ” ) ,  and (1.9) f o r  a trajectory w i t h  these controls, are suff ic ient  

conditions f o r  the  optimality of these controls. 

.. 

- 

. 
) ;  Note. The necessity of condition (2.10) f o r  an optimal a rc  can be shown 

I O  
I ’  , by  m e a n s  of the following simple construction: 

Consider t he  f i e l d  of extremals corresponding t o  controls equal t o  the  op 

timal controls 

cer ta in  in te rna l  in te rva l  which can be as small as may be desired. 

i n t e rva l  include the point (a, 11,  t )  f o r  which condition (2.10) i s  t o  be 

proved. 

and t o  the  a rc  AB, d i f fe r ing  from t h e  optimal only over a 

Let this 

Let us d r a w  t h e  a rc  AB outside t h e  optimal arc such t h a t  it can be 

e i the r  tangent t o  cer ta in  extremals o r  i n t e r sec t  them, but necessarily a t  two 
2 1  , 

2 (7 ~ ~ 

- 5  .points. 

- 1  

- 
On integrating eq.(1.5) over the extremals intersect ing t h e  a rc  AB, we ob 

t a b ,  instead of q.(2.6), 
’i’ 

(2.61 

By m e a n s  of eqs.(2.61) and (2.8) we arr ive a t  eq.(2.9), and consequently also 

a t  the  necessary condition (2.10). 
> 

’” 

Section 3. Application of t he  Hamilton-Jacobi Method 

The optimal t ra jec tory  {a] and the  h d e t e m i n a t e  fac tors  { h i ]  satisfy t h  

canonical equation with the Hamiltonian function (1.6) wi th  controls {s ) whic 

a r e  t o  be considered as expl ic i t  functions of time. This canonical system may 

be solved by t he  Hamilton-Jacobi method. 

For  this purpose, l e t  us se t  up the  p a r t i a l  d i f f e ren t i a l  equation 

I 10 ~ - __ 



On t h e  basis of eq.(l.6), eq.(3.l) w i l l  be of the form 

. 
) 'Equation (3.19) shows that the Hamilton-Jacobi equation f o r  the problem of the 

select ion of optimum controls i s  a first-order linear p a r t i a l  d i f f e ren t i a l  equ 

t ion.  

Let, f o r  certain Q (t), the  following complete in tegra l  of eq.(3.1) be /1 
found: 

(3.2 

. where ai a r e  n independent constants and a,, i s  an additive constant. Then, t h  
- .  

. solut ion of eqs.(l.l) and (1.7) f o r  these controls 4 (t)  i s  given by 

(3.3 

(3.4 
. 

- ~ where a r e  new independent constants. 
t 

It i s  generally known that the complete in t eg ra l  of e ~ ~ ( 3 . l )  i s  determine 

' with an accuracy t o  an additive constant, by the  action integral .  We, there- 
I '  

1 ,  

-' , fo re ,  have I 
. ', 
. -  

W = )  Ldt+rq. 

The function R of eq.(1.4*) depends on the  i n i t i a l  and f i n a l  values of t he  var 

iab les  and w i l l  be a certain additive constant. 

minimized will be equal, with accuracy t o  within an additive constant, t o  t h e  

complete in tegra l  of eq.(3.1). 

1" 

Hence, the functional t o  be 

On the  basis of e q ~ ~ ( 3 . 1 )  and (3.4), fo r  any expl ic i t  representation of a 

functional on the  t ra jec tor ies  of the system (1.1) and (lo?), w e  have the  re- 

i l a t ions  

11 



(3.5 

Equations (3.5) may be used t o  work out programs of numerical solution of 

,, var ia t iona l  problems, f o r  instance, by t he  divergence method (Bibl.6). 

then t h e  complete integral of t h e  Hamilton-Jacobi ~- If ai = A :  a n d h  =a, 0 

h )  ~ + 

, equations i s  written i n  the  form of (Bibl.7) 

Section 4. Optimal Impulse Transfers between Coplanar Orbits 

As an example of t he  application of the Hamilton-Jacobi method, l e t  us  

f ind  the  conditions of optimal bpu l s ive  coplanar t ransfers  between e l l i p t i c a l  

- ‘ o r b i t s  i n  the  gravitational f i e l d  of a spherosymmetric cent ra l  body. 
- _  

I 
- 1  . L e t  us consider t he  motion of  a rocket ship in a polar  coordinate system 
- 5  , 

’“ > -  

- ’ 

( r ,  v )  with i t s  or igin at  the center point of t he  central. body. 

of motion wi l l  be of t h e  form 

The equatzons 
- -  

- )  

(4.1 
’-. . 

where k” i s  the  gravitational constant; vr and vg a r e  the  projections o f  the 

‘ve loc i ty  of t h e  ship on the radius vector and transversal ,  respectively; B = 

i = -I+ In m; CL, i s  the  constant effective exhaust velocity;  m i s  the  mass; y i s  
i 
Ithe angle between t h e  thrus t  and the  radius vector, measured i n  t h e  direc- /1 
‘ t i o n  from the  radius vector t o  t h e  velocity of motion of t h e  ship. 

’ %  1 

- 4  I 

- 

;.> 
.. 

il’ 

1 ‘  1 
‘ 4  

For any possible interplanetary f l igh ts ,  t h e  acceleration developed by 

modern rocket engines considerably exceeds the other  terms on t h e  r ight  s ides  

of eqs.(L.l). 

impulsive c r i te r ion  of velocity: 

1 

Therefore, f o r  t he  boost phase, l e t  us take t h e  equations of t h  

I 



~- 

~ ~ Z , I - = ~ ~ C O S + .  vF==ijsint$, i = ~ ,  Cif=o. (4.1' 
Star t ing  out from the  capabili t ies of rocket engineering and the  allowabl 

accelerations, a res t r ic t ion  on the  control r e l a t ive  t o  the  value of B m u s t  be 

adopted : 

- I  

' 

- 
' 

0 (4.2 

' I '  i 
' I  

The equations of motion on the passive phases a re  obtained f romthe  syste  
I _  

, ' (4.1) by se t t i ng  b = 0. 

Understanding the  term optimal i n  the  sense of minimizing t h e  consumption 

of mass, w e  s h a l l  minimize t h e  functional 
T 

(4.3 

_ I  

. where i s  the i n i t i a l  mass and mrc tne final mass of t h e  ship, while and T 
- 1  

~~ 

- ,  ' a re  the  respective times of start and flnish.  

I The functional (4.3) must be minimiized by means of t he  constraints (4.1) 
2 )  . 1 
:,> 
- . 
~ 

'or (4 , lv) , res t r ic t ion  of t h e  control of in t he  form of eq.(4.2), and the  
- I  

. boundary conditions (Bibl.8): 

Here the  subscript H indicates the character is t ics  of the  i n i t i a l  o rb i t  

and t he  subscript K those of t h e  terminal orbi t .  

used i n  eqs.(h.l+) and (4.5): e = eccentricity;  p = parameter; w = angular dis- 

tance of the  pericenter f r o m  the  polar axis;  f = t rue  anomaly. 

I n  the  case under consideration, €"I,, = 0 and the boundary conditions a r e  

The following notation is 

expressed by the expl ic i t  re la t ions (4.4) and (4.5). 

not introduce the  indeterminate constants Vp, and shall use t h e  conditions of 

t ransversa l i ty  i n  the  general form: 

For this reason w e  sha l l  

~~ ~ 

0. 

I 13 I 
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Here the t o t a l  variations of the variables a r e  calculated along the limit 

- 
' except A t  are expressed respectively in  terms of Af" and bfK . I n  formulating 

ing  orbits.  I n  v i e w  of eqs.(4.4) and (4.5), t he  variations of all variables 

- 
the  problem w e  do not consider t h e  specific motions along the l imi t ing  orbi ts ,  

so that the  variations of AfH , AfK , At and A t  w i l l  be independent. 

obtain &, H K  = 0 and, since eqs.(l+.l) a r e  stationary, we obtain H = 0 along 

the  en t i r e  optimal trajectory.  

the  l imit ing o rb i t s  a r e  proportional t o  the r ight  s ides  of eqs.(4.1), calcu- 

Hence w e  

The variations of  ve loc i t ies  and coordinates o 

. 
l a t ed  on the l imit ing orb i t s  f o r  B = 0. 

W e  a r r ive  a t  the  following conditions of transversali ty:  
-i j 

2' :bits, respectivdy. 
- I  

- t  

Star t ing  out from eqs.(L.l') l e t  us s e t  up 
- 1  1 

t i v e  phases: 
H=b(---l +A,cos*j,+).,s 

the  function H for t he  ac- A 

We now wri te  the Hamilton-Jacobi equation: 

* U. -+I(-]  dW +2;F; dW 
at 

The complete in t eg ra l  of this equation is 

The integrals  of e q ~ ~ ( 3 . 3 )  and (3.4) y ie ld  

f 

(4.7 

W e  r e c a l l  t he  conditions of  nxdmm H on the  optimal t ra jectory.  Writing 

out the  f irst  and second p a r t i a l  derivatives of the  function (4.7) with respec 



~ 

0 

t o  5 and $, we come to  the conclusion that the ac t ive  phases can include the  

tlE3 t ra jec tor ies :  ( a )  of t he  programmed t h r u s t  a t  - da 
o r  

(b) phases of mardmMl reactive acceleration G at  . 
(4.5 

Since H = C 

and H is a l inea r  homogeneous function of B ,  t he  sign of inequality for t he  

derivative -% i s  dropped and t h e  indetermhate mult ipl iers  here a r e  also de- 
% 

telmined from eqs.(4.9). 
1 ,  

Equations (4.8) and (4.9) show that the  incl inat ion angle f of the  thrust  

, remains constant f o r  any powered section of t he  t ra jectory.  For each such 

- , ,  phase or section, eqs.(4.l') and (4.8) w i l l  yie ld  

(4.1 

- 1  

-. 
It follows more p a r t i c d a r l y  from eqs.(i+.lOftfiat tim consumption--of mass 

during t h e  act ive phase i s  determined by t h e  required increment of velocity an 

7- 1 

- 

does riot depend on the  par t icu lar  law of burning. 

On the  passive phases, the  controls over B and $ are shut down. These 

phases admit of the maximum principle. L e t  us f ind an expression f o r  the  inde 

terminate factors  on the  passive phases by the  Hamilton-Jacobi method. 

The Hamilton-Jacobi equation i s  of t h e  form 

dW 
dt 
- (4.u. 

The complete in t eg ra l  i s  

W=a,t+ccpp+@(v,, &H r .  % 

where @ is  a certain function of these arguments. 

On the  basis  of eq.(3.4), this yields 



'For this reason, ha = const f o r  both passive and act ive phases. v i r tue  of 

t h e  Weierstrass-Erdmann conditions, 1, is the  same constant over the en t i r e  op 

timal trajectory.  
- . 

For t he  passive phases, w e  have 

/complete in tegra l  i s  written i n  the  form of 

= 0, hence L = 0, and by 9.(3.6) the  . 
I i o  I 

2 %  Star t ing  from eq.(3.4), w e  obtain expressions for t he  indeterminate multi- 

( p l i e r s :  

' <  L e t  us take t h e  solution of eqs.(4.l) on the  passive phases i n  the  follow- 
1 L _  

? '  ing form: 

\ $  

, 'where e, p, and W a r e  the  eccentricity, parameter, and angular distance of the  

pericenter of the  t rans i t iona l  e l l i p t i c a l  orbit from t h e  polar  axis, and f i s  

. t he  true anomaly on this orbit .  

. 

'- 

' I  

, W e  note that the  t r u e  anomaly i s  expressed i n  terms of t h e  time t by meanr  
'1 . 
,- ,of the  relations (Bibl.8): 
.. 

I 
9 1  
c j  iwhere 

, 

is  the  time of t r a n s i t  through the  pericenter and a i s  the  semi-major 
, 
1 

I 
I 
I 

.axis, which for an e l l i p t i c a l  o rb i t  is equal t o  p ( 1  - ea)-'. 

Let us denote by a ( k  = 1, 2, 3, 4) t he  Keplerian elements e, p, and - 1  

,Equation (4.12) then takes t h e  form of 

1 16 .. 



. 
~_ 

If we put t = to i n  eqs.(k014) and (4.15), w e  a r r ive  a t  the expressions 

To obtain eqs.(4.16), the  Keplerian elements must be represented in t e r n  of xr 

Here, on t h e  basis of eqs.(4.15), we shd 
- 

. .by the  a i d  of eqs.(4.14) and (4.15). 

i 

where Y i s  a certain function of these variables. 

8 '  The quant i t ies  e, p, w, and f will now be expresse, on the  basis o 
' J  , 

eqs.(4.14), expl ic i t ly  in tenns of q. We w i l l ,  therefcre, have the i d e n t i t i e :  

On t h e  basis of eqO(4.l8) we have 

- _ - _  - _ - 

Equation (4.12) and the  Hamilton-Jacobi equation w i l l  f i n a l l y  y i e l d  & = -H.& 

I n  this case, therefore, & = 0, and t he  expressions f o r  the  indeterminate m u l -  

t i p l i e r s  w i l l  contain only three b-determinate constants. 
a4r 

ax, 
To determine the  derivatives - , l e t  us d i f fe ren t ia te  eq.(4.14) w i t h  

- 5  . respect t o  a We then have 
- 1 -  , 

1 

i 
-1 q2 

t i  The coefficients Blj vanish f o r  i f j, B l 1  = Be2 = k p , 833 =-p'-' (1 + 
I 

- I  

j +  e cos f)Z, b4 = 1. 
I 

Making use of t he  obvious equality i 
I 



and assuming t h a t  e f 0, we obtain, a f t e r  simple calculations, 

- 
> l  ' 

, 
_' 1 ' 
? ,  
1- I 
- ?  

Equations (4.19> are of great independent significance, since they deter- 

'mine the  variation of t h e  elements e, p, 0) f o r  a small variat ion of t he  posi- 

' t ion  of t he  point and of t h e  velocity of t he  satel l i te  going i n t o  orbit .  

- 
- 
_ I  

~ _ _  

- .  
Introducing the  following notation f o r  new constants: 

- 1  
A = - &le-lpll2A3, B = k- Ie--Ip1/2A,, D = k-Ie-1pV (ea - 

we s h a l l  have, from eqs.(~.16) and (4.19): 

-l 

% >  

.% 

; i  

5 r )  

2 -  

(4.20 

h=Acos f+Besin f, 
h= - A sinf(2 + e cosf) + B ( 1  +e  c o s f )  + D  
A,= - k f ~ - ~ ' ~ ( l  +ecos f)* [Asinf(A +ecosf)-'- 

a, = - &ep-'"A. 
- B - D(1 + e  cosf) - ' ] ,  

. -  

The constants A ,  B and D coincide with t h e  Lawden constants (Bibl.9) f o r  a 

Our discussion has now established t h e  connection noncircular t ransfer  orbi t .  

of t he  Lawden constants with 1; and t h e  elements of t h e  t r ans fe r  orbi t .  

our study w a s  i n  a polar  coordinate system, 

than Lawdents corresponding formulas (ab1.9)  f o r  t he  indeterminate mult ipl ier ;  

Since 

eqs.(4.20) turned out simpler 

~~ 

18 . . 



. . 
4 

on a noncircular orbi t .  

L e t  us obtain expressions f o r  the  indeterminate mult ipl iers  that w i l l  be 

. su i t ab le  f o r  any t ransfer  orbi t ,  including a circular  one, f o r  which e = 0. 

the  new elements q = e cos w and 1 = e sin w, 

1 
, 

Substi tuting for e and 1 
1 w e  now w r i t e  eq~~(4.14) i n  t he  form of 

I 
1 I 

v,=kp-ln(qsln 'p-Icoscp), ~ , = k p - l ' ~ ( l  $-qcoscp$-Islncp),, 1 
r = p ( 1  +qcoscp+fsincp)-*. I (4.21) 1 I 

Different ia t ing eqs.(4.21) with respect t o  a, w e  obtain equations f o r  

. determining the  p a r t i a l  derivatives : 

i 
- y p - '  (q sin 'p-lcos 

1 
I ( 1  +gcos 'p +isin y )  

The matrix of coeff ic ients  I ~ G J  11 i s  of t h e  form 

It-'p'" 0 0 /1 8 k - V n  0 
0 -p-'(1+gcos'p+fslncp)' 

Hence, w e  f ind the  following apress ions  f o r  t he  derivatives: 

Equations (L.21) determine the  variation of  elements q and I f o r  a small 
' 

var ia t ioc  i n  the veloci ty  and position of t h e  ship. 

19 



Introducing the  following notation f o r  constants: 

M =- k-'p'*A,, N=&-'p'nA,, Q = 2 k - l P A  

we s h a l l  have, from eqs.(ko16) and (4.2l), 

Putt ing q = 8 = 0 i n  eqs.(4.22), w e  obtain, f o r  a c i rcu lar  t r ans fe r  o rb i t  

(4.23 I As= - kp-yl (M sin 'p - IV cos 7 - Q], 
A,= 0. 

The constants M, N, and Q here coincide with t h e  Lawden constants (Bibl.9 

f o r  t h e  case of a c i rcu lar  orbi t .  

responding Lawden formulas. 

f a c t  t ha t  our formulas,hstead of the t r u e  anomaly f ,  use the  l a t i t u t e  argu- 

Equations (4.23) a r e  simpler than t h e  COI- 

The difference between these  also consis ts  i n  t h e  

ment cp which corresponds be t t e r  t o  a c i rcu lar  t r ans fe r  orbi t .  The present 

~ s t u d v  has a l s o  e s t a b l i s h e d  t h e  connection o f  t h e  Lawden const.nnt.s w i t h  h? and 

> 

.- 

- -  

,') 1 The continuity of t he  indeterminate mult ipl iers ,  t h e i r  expl ic i t  expres- 

, 

The general representation [ eq. (4.22)] obtained above i s  pa r t i cu la r ly  

convenient f o r  considering quasicircular t ransfer  orbi ts .  
*. 

r o  4 

is ions given by eq~~(4.9) and (4.22), the boundary conditions (L.4) - (4 .5) ,  
I 

, t h e  conditions (4.10) f o r  veloci ty  jumps f o r  each ac t ive  phase, and t h e  condi- 

t ions  (4.6) of transversali ty,  y i e ld  a number of equations su f f i c i en t  f o r  de- 

termining a l l  unknown quant i t ies  f o r  a prescribed number of impulses. 

An investigation of these equations would be a separate problem, beyond 

t h e  scope of t h i s  paper. 

20 
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